
,Ab-A127 412 CHARACTERIZATION OF LASER BEAN GLJALITY(U) AIR FORCE 112
INST OF TECH WPIGHT-PRTTESSON AFB OH SCHOOL OF
ENGINEERING A T GIJMAHRD DEC 82 RFIT/GEO/PH/82D-4

UNCLASSIFIED F/G 28/5' NLEhaahahhhhhhiE
El//IOI/IOOOOIE
EIIIIIIIIIIIIE
IIIIIIIIIIIIIE
ElllhlllllhllE
Elhlll~llhlhhE
Enmmmmnnmhhh



,* "  ' ' ' ' '  - - . , . , , : .... ., , . , , ..... . . . . . . . . . .. . . . . . . . ... A . . .

b.

Xim

ilgri
11N - o

IN11 I '- ' "

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

%r

t
:,.' ..- '.- ..- .." -:. .'i,'2- -]' 'i .2 " i ." .-: ' , -i " -i . i " " :. " -- ? i ' -. ' " i ' " " ."' , " i -



7.$

OFI

CH4ARACTERIZATION OF LASER BEAN QUALITY

4 THESIS

AFIT/GEO/PH/82D-4 Arsenio T. Gunahad I:

Capt UTSA]

'.'>"

L-J

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY (ATC)

AIR FORCE INSTITUTE OF TECHNOLOGYC

Wr £ oterson Air Force Base, Ohio

-"d ml.; NO
\ "\



S . .... .. . ." .'-

AFIT/GEO/PH/82D-4

.,N

CHARACTERIZATION OF LASER BEAM QUALITY

THESIS

AFIT/GEO/PH/82D-4 Arsenio T. Gumahad II
Capt USAF

Approved for public release; distribution unlimited
U -.



AFIT/GEO/PH/8 2D-4

CHARACTERIZATION OF LASER BEAM QUALITY

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

4' in Partial Fulfillment of the

-. Requirements for the Degree of
Accession For

Master of Science NTIS SRA&I
DTIC TABlkenleunced
Justiticatlo

Distribution/

Availability Codes

AvailT and/or

Dist Special

'4 *. 

by

2Arsenio T. Gumahad II, B.S.E.E.

- Captain USAF

Graduate Electro-Optics

Dec 1982

I-

- - - - - - -- -" " " " " " * ' " * * "- " *~ .. ' " * . "- " . • : , - 2 / .. .,. .z -



. . . .

Preface

This report examines an improved method of laser beam

quality characterization. Much of the work done in this re-

port involved computer programming, debugging, and endless

simulations, in addition to information gathering on a limi-

ted subject matter. Thanks are due to my advisor, Capt R.

Cook, and my thesis sponsor, Mr S. Johnson of the Air Force

Avionics Laboratory. Their continued support and technical

expertise were critical throughout this thesis.

This thesis can not be complete without thanking my

fellow students and family. The friendships I have gained

here will certainly follow me for years to come with fond

memories. My family, even from far-away New Jersey, were

certainly instrumental in providing me the needed personal

support, through their continued love and understanding.

Lastly, my best of thanks to Jamie. Her love and devotion

made a very positive contribution throughout this thesis

effort, through, certainly one of the hardest times in my

life.

Bong Gumahad

,2"~.. . . .. . . .. ....'ii.; .,' --.. :2 ..i . . ,: .... : .......... _. _ . _ • "..._ -



Contents

Preface .ii ........

List of Figures . . . . . . . . . . . . . . . . . . . . iv

List of Tables . . . . . . . . . . . . . . . . . . . . vi
Abs rac .o. .e o.o. .o. .o. .e. . o. . . . vi

1. Introduction . .. .. .. .. .. .. .. .. .1

Task . . . . ... . . . . . . . . . . . . 2
Scope and Assumptions. . . . . . . ..... 2

Organization and Approach to the Problem . . . 3

II. Current Methods of Characterizing Laser Beams.. 6

Existing Figures of Merit ...... . . ... 6
Power in the Bucket. . .. ....... . 7
Beam Divergence and Spot Size Measurements . . 13
Strehl Ratio . . . . . . . . . . . . . . . . . 22

III. Modeling Phase Aberrated Laser Beams . . . . . . 25

Theory . . . . . . . . . . . . . . . . . . . . 26
The Numerical Model.......... . .. 30

Operation . . . . . . . . . . . . . . . . 33L Output . .. .. .. .. .. .. .. . .. 35

IV. Characterizing Phase Aberrated Laser Beams . . . 36

Characteristics of Nondiffraction-limited
Beams. . . . . . . . . . . . . . . . . . . . 36

Least Squares Method of Curve Fitting. . . . . 51
Data Analysis. . . . . . . . . . . . . . . . . 54

V. Conclusions and Recommendations. . . . . . . . . 69

Proposed Procedures. ............. 77

Bibliography . . . . . . . . . . . . . o . . . o o 80

Appendix A: Numerical Model of Nondiffraction-limited
Beams . . . . . . . . . . . . . . . . . 82

Appendix B: Least Squares Method of Curve Fitting . . 92

Appendix C: Values of Randomly Generated Coefficients.95

",.i iii

.. . . . ..,. . . .. . . . . . . . .

*. . . . . . .a,..



List of FiQures

Figure Page

1 Intensity Distribution of Gaussian Beam. . . . 8

2 Beam Quality P-R Curve . ........... 9

3 General Beam quality set-up . . . . . . . . . . 10

4 Transmitted Power vs Aperture and Theoretical

5 Relative widths for ideal and non-ideal Laser
Beams . . . . . . . . . . . . . . . . . . . . . 12

6 Laser Geometry ............... . 13

7 Intensity Distribution of a Gaussian beam in
which the center is interrupted by an opaque
ribbon . . . . . . . . . . . . . . . . ... 16

8 Typical Laser set-up from which beam parameters
are determined . . . . . . . . . . . . . . . . 17

9 Attenuator method for determining divergence .20

10 Comparison of waist (w) to the distance from
the laser (z) for scanning wire, scanning edge,
scanning slit, and theoretical curve from
cavity theory ................ 21

11 Wave propagation into the Fresnel region and
* beyond . . . . . . . . . . . . . . . . . . . . 23

12 The rectangular function . . . . . . . . . . . 31

13 Simplified flow diagram of computer model to
determine irradiance distributions . . . . . . 34

14 Irradiance profile of phase aberrated beam . . 40

15 Irradiance profile of phase aberrated beam . . 41

16 Irradiance profile of phase aberrated beam . . 42
1 Irradiance profile of phase aberrated beam 43
17 Irradiance profile of phase aberrated beam . . 43

S18 Irradiance profile of phase aberrated beam . . 44

19 Comparative plots of diffraction-limited beam
and three cases of phase aberrated beams 45

iv

...................



20 Irradiance profile . . . . . . . . . . . . . . . 47

21 Irradiance profile . . . . . . . . . . . . . . . 48

22 Irradiance profile . . . . . . . . . . . . . . . 49

23 Irradiance profile# . . . . . . . . . . . . . . 50

24 Flow diagram of method to calculate F and 0.2
by the least squares solution and using the
incremental search method . . . . . . . . . . . 55

25 Curve fit . . . . . . . . . . . . . . . . . . . 57

26 Curve fit . . . . . . . . . . . . . . . . . . . 58

27 Curve fit . . . . . . . . . . . . . . . . . . . 59

28 Curve fit . . . . . . . . . . . . . . . . . . . 60

29 Curve fit . . . . . . . . . . . . . . . . . . . 61

30 Quality of fit . . . . . . . . . . . . . . . . . 62

31 Quality of fit . . . . . . . . a . . . . . 63

*32 Quality of fit . . . . . . . . . . . . . . . . . 64

33 Quality of fit. . o o o o . . . o 65

34 Quality of fit. . . o 66

35 Total power plot. . . . . 72

36 Total power plot. . o o . . . o . o . . . 73

37 Total power plot . . . . . . o . . o o . o o 74

38 Total power plot, . . . . . . . . . . . . . . 75

39 Total power plot... .. .. . .. . .. 76

V



q x

List of Tables

Table Page2

Measured values of F and 0 for
individual terms . . . . . . . . . . . . . . . 67

II Measured F and .2 for twenty random
numbers of phase aberration. . . . . . . . . . 68

vi

-°-



AFIT/GEO/PH/82D-4

Abstract

Current methods of characterizing the quality of laser

beams were found to be generally insufficient. Since lasers

are gaining more use in many applications, an improved set

of quality criteria must now be developed. This thesis re-

port investigated characteristics of random phase aberrations

and its effects on the far-field irradiance distribution of

lasers. A numerical model was developed to simulate non-

diffraction-limited beams. Several simulations were done to

study the irradiance profiles for varying degrees of aberra-

tions. It was found that phase aberrated beams can be ex-

pressed as the sum of two beams: one is the diffraction-limi-

ted beam attenuated by a factor F which is a function of

the phase distortion, and the second, a much wider beam.whose

amplitude and lateral extent is a function of the variance

and the form of the phase aberration. By assuming the shape

of this 'secondary' beam to be Gaussian, its extent can be

measured by calculating the variance,O 2 , of the Gaussian

distribution. A numerical code was devised to determine the

two parameters by a least squares curve fitting method. A

proposed list of procedures is included in the report to

measure these parameters experimentally using data derived

from the 'power in the bucket' method. The quality of a

laser beam is dependent on the degree of phase aberrations

introduced into the system. F and describes the amount

and form of the phase aberration, thus providing a better

* "criteria for beam quality determination.

vii
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CHARACTERIZATION OF LASER BEAM QUALITY

I. Introduction

The requirement for precision laser systems is being re-

cognized increasingly in applications involving weapons sys-

tems and in medical research. In many applications, this is

achieved using advances in state-of-the-art laser technolo-

gy. However, a persistant problem in engineering applica-

tions of laser physics is how to characterize the quality of

a laser beam. Although several criteria for beam quality are

presently in use, there is no general agreement as to how

the relevant Figures of Merit (FOMs) are to be measured.

~ most existing characterization of beam quality attempt to des-

cribe the quality of the beam by specifying a single number,

such as the 'number of times diffraction-limited' or the

far-field divergence angle. A measure of quality for any

'1 system should lie in its ability to reproduce theoretical or

0 ideal expectations. For example, if a beam is propagated

through an optical device, the output of this device should

reproduce the input exactly. Thus, for optical systems, in-

cluding lasers, a measure of quality should be a comparison

of its measured irradiance profile with the ideal profile.

Lack of c. ality an inherent result of imperfections or

aberration-3 _,n the optical device used, e.g. mirrors, aper-

tures, or lenses, as well as the laser medium and atmosphe-



ric turbulence. Therefore a good measure of beam quality

is the full Pti of the aberrations present in the

system. Most of the existing and widely used criteria fail

to fully describe these aberrations. This thesis report

proposes a new set of characterization criteria which will

describe beam quality by characterizing the aberrations pre-

sent in the system.

*Tasks

1. Critical survey of existing beam quality criteria

and methods of beam quality measurement. Determine the most

current and widely accepted criteria for beam characteriza-

tion.

2. Development of an improved characterization criteria

to completely describe the quality of a laser beam. If the

current quality characterization methods are found to be in-

adequate, the thesis will propose an improved set of FOMs

which will provide greater accuracy in beam quality descrip-

tion and characterization.

3. Describe standard procedures for the measurement

of the FOMs arrived at in task 2.

Scope and Assumptions

This work will be limited to scalar diffraction theory.

Only the scalar amplitude of one transverse component of

the field will be crnsidered.

Nondiffraction-limited beams are a direct result of

-- imperfections in the optical device as well as beam attenua-

2



tion due to characteristics of the medium of propagation.

Determining beam quality is typically accomplished in an

. experimental set-up under laboratory conditions. As such,

the effects of the medium on the irradiance distribution of

the beam are neglected in this report. Only distortions

-generated within the lasing cavity or imperfections in the

mirror surfaces are assumed to result in the nondiffraction-

limited nature of the laser beam.

Organization and Approach to the Problem

A systematic approach or plan of attack was devised to

ensure that an optimum solution to the thesis problem is

reached. These are listed below.

1. Phase I: Critical survey of existing beam quality

criteria and methods of beam quality measurements. This

phase included an extensive survey of current literature and

materials on the subject. Materials from numerous enginee-

ring and scientific literatures were used as well as mate-

rials from Air Force and Department of Defense published re-

ports.

2. Phase II: Development of a list of currently used

methods including an outline of the procedures employed to

measure the FOMs. In addition, methods of determining spot

size and beam divergence were reviewed and documented.

• .These are listed and discussed in detail in Chapter II.

" 3. Phase III: Development of a more complete quality

- characterization criteria for laser beams. The critical sur-

3
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vey of Phase I indicated that the current methods used are

generally insufficient to describe the quality of the beam.

A more accurate set of criteria was developed during this

phase. Phase aberrations and diffraction theory of phase

aberrated beams were studied during this phase. A computer

code was developed to model the propagation of phase aberra-

ted beams and to allow the study of irradiance profiles in

the presence of random phase aberrations.

4. Phase IV: Numerical and analytical methods were

investigated, during Phase IV, which were to measure the

FOMs derived in Phase III. A code was developed to numeri-

cally determine values of the FOMs by fitting the actual aber-

rated data with a proposed mathematical expression for the

I T nondiffraction-limited beam.

5. Phase V: Development of an experimental procedure

to measure the FOMs developed in Phase III and Phase IV of

the study.

Chapter II, of this thesis report, examines the various

methods of beam quality characterization currently used. It

includes a discussion of the theory and procedures practiced

when measuring these FOMs. Chapter III discusses the deve-

lopment of a computer model to simulate nondiffraction-lim-

ted laser beams, while Chapter IV reviews the results found

from several simulations of non-ideal beams. From these re-

sults, a new set of FOMs was devised and a numerical method

of measuring the FOMs was derived. Chapter V discusses the

4
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merits of the new FOMs when characterizing beam quality and

proposes a list of procedures to measure these parameters

experimentally.

5
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II. Current Methods of Characterizing Laser Beams

An extensive literature survey was undertaken, during

Phase I, to identify currently used methods for character-

izing the quality of laser beams. This chapter outlines

the various figures of merit used to determine beam quality.

The next section lists a number of FOMs currently used (Ref

22), while subsequent sections describe the procedures used

to measure the three most widely accepted quality criterions.

Existing Figures of Merit

1. 'Power in the bucket' method- provides a compari-

" son of theoretical and experimental data which is the basis

for beam quality determination. Beam quality measurements,

involving the 'power in the bucket' method, are normally

performed measuring some 'width' of the central maximum of a

diffraction pattern at the far-field of a laser beam. This

*is then compared with some diffraction-limited calculated

'width'. From the comparison of the two widths, one measure

of beam quality is obtained (Ref 2).

2. Beam Divergence- a measure of the spread of a laser

beam propagating in a medium, as a function of distance from

the laser source. A comparison of the experimental diver-

gence and theoretical divergence provides one quality mea-

sure. In addition, the smaller the divergence angle, the

higher quality the laser is said to be. This is especial-

6
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:-- -ly true in applications involving the need to deliver the

maximum amount of energy into a very small target area.

3. Strehl Ratio- calculates the ratio of the on-axis

irradiance of the aberrated system versus the on-axis irra-

diance of the diffraction-limited beam. From this ratio,

the amount of distortion introduced in the system can be ap-

proximated.

4. Focusing Efficiency- indicates the percentage of the

total power in the exit pupil which is focused into a speci-

fied 'bucket'.

Total Power in the Bucket

For a laser beam with a symmetric Gaussian profile and

waist w , the intensity distribution is given by:

1(r) = I(O)e-2 r/w (2.1)

where I(r) is the beam irradiance as a function of radius

r , and 1(0) is the maximum on-axis intensity. Figure 1

shows a representation of the Gaussian beam as a function of

the beam radius r

Integrating equation 2.1 over the radius of the beam

gives the total power within the entire beam. Thus,

R
'' ' /I ) -2r2 2

(0)/P(R) =w( 27rr dr (2.2)

0

a 7
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A solution to this integral results in,

2 2
P(R) r7Tw2 I(Q)(l-e-2R2/w (2.3)

2

The ratio of P(R) to the total power P(O0) is expressed

as:

P(R) 2R 2/w2 (2.4)
p()= 1-e 2 R/

Equation 2.4 gives the normalized power of a Gaussian beam

transmitted through an aperture radius of R . When R>>w

the power transmitted is maximized at 1 . By varying the

values of R , a relationship between total power and aper-

, ture size is derived. A typical Power-Radius (P-R) plot is

shown in figure 2. If the beam emanating from a laser is

8B
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Fi.'ure 2. ee2 Quality T-iT curve

propagated through a series of aperture radii, a comparison

of actual measurements with the theoretical diffraction-lim-

ited beam provides one measure of beam quality. A 'good'

laser beam would closely approximate the P-R plot of the dif-

fraction-limited beam and the numerical results of equation

2.4. Figure 3 shows a typical beam quality measurement ar-

rangement. A lens is used to provide far-field conditions

at a reasonable distance from the laser. At the focal plane,

a variable iris is placed with a power measurement device im-

mediately behind it. With the iris fully opened, a measure

of the total power through the aperture is taken to deter-

mine the total power output of the laser. By varying the

diameter of the iris or aperture, the relationship between

9
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transmitted power and aperture radius is determined. The ra-

tio of this power with the total laser power is the norma-

lized transmitted power. Figure 4 is a typical plot showing

the P-R curves for non-ideal and diffraction-limited lasers.

Although a comparison of the non-ideal Gaussian P-R

curve with the diffraction-limited Gaussian P-R curve pro-

vides a quantitative measure of beam quality, a single num-

ber is typically associated with this measure. Lasers are

often characterized as being 'n times diffraction-limited'

(Ref 8). There is no standard way to determine the In times

diffraction-limited' number. One method of computing the 'n

times diffraction-limited' number is dividing the radius cor-

responding to a measured percentage transmission by the theo-

10
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retical radius which would transmit the same measured trans-

mission percentage (Ref 7). For example, figure 5 shows the

intensity distribution for a non-ideal laser beam and a Gaus-

sian diffraction-limited laser beam. In the ideal case, an

aperture radius of 2 mm is required to transmit 70% of the

power while in the non-ideal case, a 4 mm radius is required

to achieve the same amount of power. The laser is then said

to have a 'diffraction-limited' number of 2 . The 'times

diffraction-limited'number can also be defined as the ratio

of the transmitted power of an ideal beam with that of the

non-ideal beam at the radius corresponding to the laser beam

waist. For example, if at the beam waist, the diffraction-

limited laser was transmitting 86% of the power, while the

non-ideal laser 43%, then the corresponding 'number of times

12
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diffraction-limited' is 2.

Beam Diveraence and Spot Size Measurements

A generally simple method to characterize a laser beam

is by describing its far-field profile. Many use the diver-

gence angle as a measure of this quality. Depending on the

application, the divergence angle will vary. For most sys-

tems where maximum energy is desired on a small area at pos-

sibly great distances away, the divergence angle should be

very small. The divergence angle, 19(z) is the half-angle

spread to the point at which the beam irradiance falls to

1/e2 of its central value and is described in equation 2.5

and illustrated in figure 6.

(z=oo) 0\lr (2.5)

13



One method to determine quality using spot size measure-

ments, is by comparing the measured spot size and the theore-

tical spot size determined in the far-field. However, mea-

surement, of spot size, and for that matter divergence, is

not an easy task. This section will now attempt to describe

several methods to determine these parameters for lasers with

symmetric Gaussian intensity distributions. The most straight

forward technique to measure spot size is to scan the beam

with a pinhole or slit. However, this technique is now con-

sidered unacceptable since in addition to being slow and

tedious, it is very sensitive to the scanning path across the

beam (Ref 23). The scanning knife-edge method is then used

to alleviate these shortcomings. The technique makes use of

the waveform generated when the beam is interrupted by a

straight-edged chopper moving at a uniform speed (Ref 18).

Suzaki and Tachibana (Ref 20) used a rotating chopper with

the knife-edge and calculated the beam radius w using equa-

tion 2.6.

W 0 .7803Wr(t 2 - t1) (2.6)

In equation 2.6, Wis the angular velocity of the chopper,

r the distance from the rotating center of the rotating chop-

per to the laser beam axis, and the quantity t2 - t1  is the

time interval for the output to go from 90% to 100% of the

* total laser power. The spot size given by equation 2.6 was

14



derived using the result that the normalized power P(R)/P(O)

is given by the error function. Thus, w can be found from

the curve of P(R)/P(O).

There are still some defects to using the knife-edge

scanning technique. The scanning rate must be maintained at

a uniformly constant speed and the spot size must be calcula-

ted after fitting a variation of the output power from the

*i detector to an error function. Yoshida and Asakura (Ref 23)

proposed measuring the spot size of Gaussian laser beams by

scanning the beam with an opaque ribbon. The spatial inten-

sity distribution I(x,y) of a Gaussian Laser beam is given

by:

I(xy) 2P(O) e-(2x 2+2y 2)/w2 (2.7)7tw2

where P(O) is the total laser power, w is the spot size

measured at the l/e2 distribution point and x and y

are Cartesian coordinates measured from the beam center per-

pendicular to the axis of propagation. By scanning an opaque

ribbon across the beam, the minimum output power from the

photodetector is realized when the ribbon reaches the center

,-*: of the beam. From figure 7 and setting the ribbon width to

be 2a , the minimum power output is given by:

00 a

2P(O) -(2x +2y )/w dx dy

fm w2

-2 2 2
S"(2x + 2 y )/w dXdY (2.8)

15
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From equation 2.8 the following is derived:

vp

= erfc ( 22 a/w) (2.9)

p(0)

where, erfc(z) = (2/7T') et dt (2.10)

z

From equation 2.9, if the opaque ribbon width 2a is known,

then the spot size w can be determined by measuring the

value of P /P(O) . With this technique, the consistency of
m

the speed of scan is not a critical factor to contend with

as was the case for the knife-edge method.

16
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Figure 8. Typical laser set-up from which beam parameters

are determined.

By definition, divergence is measured at the I/e2 point

of the far-field irradiance distribution. As such, measure-

ment of the divergence for some lasers might be impractical.

Therefore, lenses are used, as shown by Suzaki and Tachibana

(Ref 21), to determine the divergence by measuring the spot

size at the focal plane of the lens and knowing its focal

length. When a beam passes through a lens of known focal

length, the beam radius in the focal plane wf is indepen-

dent of the lens position on the beam axis. This is due to

*a the fact that the field at the focal plane is proportional

to the far-field pattern of the incidence beam which depends

on the beam waist radius, but not on its location (Ref 1).

* 17
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Then, Wf =f0( ) (2.11)

where, f is the focal length of the lens and, ((00) is the

half-angle far-field divergence angle. Wf can be measured

. using one of the beam spot size measurement techniques out-

lined above. If f is known, the half-angle far-field di-

vergence angle e(OO) can be found mathematically, by equa-

tion 2.11.

Measurements of beam divergence using lenses are, unfor-

tunately, not always accurate. Many times the precise loca-

tion of the focal plane is difficult to determine. Sollid,

et al (Ref 19) proposed a lens-less method to determine beam

divergence of Gaussian-shaped laser beams. The propagation

of a Gaussian beam is shown in figure 8. Given two values

of spot sizes, w1 (z) and w2 (z) and using equZa.1iL 2.12,

the beam waist w O can be calculated.

22 2_ 2
2 (W 1 +W2 ) + ((wlw2) z 12/7) )

W= 22(2.12)
0 2 (I+(7"/ 2 AZ 1 2) (w2w) 2 2

When the beam waist location is known (z=O), and using the

expression for extracavity propagation, equation 2.13,

w(z) = (1 + ( 2Z/W o2) (2.13)
wo 0

00

where, e X/7Tw0  (2.14)

' 18



the beam waist can be calculated using the reduced equation,

2.15.

w= w 2 (1+ (1-(2XZ/7tw 2 )2 ) (2.15)
0

According to Sollid, et al, only one measurement of w(z)

is required to calculate w0  using equation 2.15. The pro-

posed method is to insert beam attenuators of known density

in front of the laser, while the energy is exposed at plane

z on a sharp-threshold energy sensitive medium. See figure

9 for illustrations. The irradiance distribution produced

at the film plane by laser intensity I attenuated by a
0

thickness of material d , with absorption coefficient O is

S0 e(-2 r2/w - ad) (2.16)

The radius to a given exposure density on the film is mea-

sured, corresponding to constant I(r) in a given exposure.

From equation 2.16, w(z) can be determined from pairs of

measurements involving the same exposure density but diffe-

rent radii ri  r and di J d Thus,

* 2 22(r. r.)
w(z) 0 (t t1 1  (2.17)
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Strehl Ratio

It is a well known fact, that the spatial intensity

distribution of an imaging system, in the far-field, is com-

pletely described by the Fraunhofer approximation to the Huy-

gen-Fresnel principle (Ref 6:57-76). The far-field inten-

sity pattern is expressed, simply, as the Fourier transform

of the field immediately behind the diffracting aperture of

an optical system. Figure 11 illustrates this point, and de-

signates U'(x,y) as this field. In general, the illumina-

ting field, U(x,y) in figure 11, can be any function. For

some lasers, U(x,y) is Gaussian in profile. The field

which immediately follows the aperture is expressed as,

U'(xy) = U(x,y) t(x,y) (2.18)

where, t(x,y) is the transmittance function associated

with the aperture, and U(x,y) the incident field. Then

the far-field or Fraunhofer field strength U(xly 1 ) is gi-

ven by Goodman (Ref 6:61) as:

1 jk k 2x2 
U(x,y) - e JZe 2 1

SffUI(xY)e j2 7/Xz(xxl+yyl) dxdy

-00 (2.19)

4 The associated far-field irradiance is then expressed as:
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and beyond.
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-00

(2.20)

Equation 2.20 represents the observed intensity distribution,

in the far-field, for a diffraction-limited optical system.

When wavefront error exists in the system, due to aberra-

tions, the optical system could be thought of as being iliumi-

inated by an ideal wave but a phase shifting plate exists

within the aperture. The phase error O(x,y) can be ex-

pressed as:

O (X,y) =k W(x,y) (2.21)
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where k = 7-/ and W(x,y) is the effective path-length

error. With aberration included, equation 2.20 is rewritten

as:

.'(xxl+yyl) 2
.~~f~xY~~xs oexIY) -L

I(x,Y)NDL = i (x,y)t(x,y)e( e dxdy

(2.22)

Chapters III and IV, of this report, will investigate aber-

ration effects on diffraction theory in more depth. When an

optical system suffers from aberrations, the peak value of

its intensity distribution is less than the peak value of the

same system in the diffraction-limited case. The ratio of

these peak values, known as the Strehl ratio, indicates the

amount of aberration present in a system, thus providing a

powerful measure of laser quality. The Strehl ratio is gi-

ven as,

I
S.R. = aberrated (2.23)

.diffraction-limited on-axis

According to Gaskill (Ref 5), a Strehi ratio of 0.8 or higher

is often considered characteristic of an optical system which

is effectively unaberrated.
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iN
III. Modeling Phase Aberrated Laser Beams

Imperfections in the optical system, called aberrations,

* are the major contributors to the nondiffraction-limited na-

ture of a laser beam. Specific sources of optical aberra-

tions that produce nondiffraction-limited beams range from

distortions generated within the lasing cavity to imperfect

mirror surfaces encountered in the exterior (and interior)

optical trains. In characterizing laser beams, it is neces-

sary to describe the nature and the form of these aberra-

tions. To do this, effects of aberrations must first be

studied. Two types of aberrations reduce the quality of op-

tical systems and hence, the output of these systems. These

are amplitude and phase aberrations. Studies have indicated,

however, that the aberrations due to purely amplitude dis-

tortions are not as severe compared to effects due to random

phase aberrations (Ref 8).

In order to study the effects of random phase aberra-

tions on the irradiance profile of laser beams, a numerical

model was developed to simulate the propagation of nondif-

fraction-limited laser beams. The function of the code is

to numerically integrate the Huygen-Fresnel integral to de-

termine irradiance. The code was devised to allow for two-

dimensional numerical integration. The need for two-dimen-

sional integration was realized to allow for flexibility in

choosing aperture type and dimension. The model determines

irradiance distributions for both circular and rectangular
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apertures. The following sections will discuss the genera-

lities and assumptions used in developing the model in more

detail, and reviews the theory of phase aberrations and also,

the theory of diffraction in the presence of phase aberra-

tions.

Theory

The general form of the Huygen-Fresnel integral is

shown in equation 3.1:

jkz jk/2z (x+Y
U(Xly I) = e

_L(X 2 +y 2  
-1(xx

Xffri (x 0" 2z o0 e* 0 zx1+Yo dx0l)' , ee dxody°

-0 (3.1)

where U(x 1 ,Y1 ) is the field strength at the observation

plane with Cartesian coordinates x1  and-Yl , and U'(xo,yo )

is the field strength at the aperture plane with coordinates

x and yo The distance between the aperture and the

plane of observation is z and the wavelength of the signal

is X By applying the Fraunhofer approximation to equa-

tion 3.1 the field strength at the far-field reduces to:

00

ejkz 2z1 1 ,22 (x -2r Xx~oU(xlY 1 ) YJ 'o'Yo)e Xo o0

(3.2)
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Hence, at the far-field or Fraunhofer region, the field

strength is simply the Fourier transform of the aperture

plane field strength multiplied by constant phase terms. The

irradiance I(xly I) is the square of the absolute of equa-

"' tion 3.2, or,

1 fu(x~)e -Jt(xoxl+yoyl) 2
V yl2I(x11 1  =y e z dx0 dy0

I((XI z) 2  '(o'o e  xo0

-00 (3.3)

Notice that in equation 3.3, the phase terms of equation 3.2

disappear.

As briefly discussed in Chapter II, the aperture plane

field strength U'(xoy o) can be expressed as:

U'(xy o ) = U(XoYo)t(xo,Yo) (3.4)

where, U(xoyo ) is the field strength incident on a limit-

ing aperture with transmittance t(xoy o). In order to

achieve far-field conditions, the Fraunhofer condition must

be satisfied. At optical frequencies, the conditions required

for satisfying these conditions can be severe. For example,

at a wavelength of 0.6 micrometer and an aperture width of

2.5 cm, the observation distance must be z>)1600 meters.

In many instances, meeting the condition is not readily real-

ized and, in most cases, impractical. As will now be shown,

the use of ideal lenses will alleviate these deficiencies
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and provide far-field conditions at the focal plane of the

lens.

The phase transformation function of a lens is given by

Goodman as:

U(xoY O) = e jknD e 2 f x+yo (3.5)

where, D is the width of the lens at the center and f ,

the focal length. If the incident field U(xoy o) is trun-

cated by a limiting aperture with transmittance t(xoy o )

and focused with an ideal lens of focal length f , then the

field at the aperture plane can be expressed as:

UI(xoyo)=U(xoyo)t(xoyo)eJknDe 2f oo) (3.6)

Substituting equation 3.6 into equation 3.1 will result in

the cancellation of the quadratic term within the integral

when z=f , thus, simplifying equation 3.1 into:
00_ Lk 2 2

U(xI'Y1-2- 2fk x+y) (xo' Yo)t(xo'Y o )

-00 -Jf(xx+yy)

X e dx dy

(3.7)

The irradiance is simply the square of the Fourier transform

of the product of the incident field and the aperture trans-

mittance function.
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In the presence of aberrations, the irradiance function

becomes,

1 j O(x 'y,
; I(xI, ) = . jjff(X 0 y)t(X,Y0 ) e

0 0 2

X e Af 0 1Yoy1 dxody o  (3.8)

where, (XoYo) represents the aberration function.

Amplitude distortions can be a contributing source to

the nondiffraction-limited nature of a laser beam. However,

their comparative contribution is much less than the contri-

bution arising from phase aberrations (Ref 8). In this

report, only small-distortion random phase aberrations will

be assumed to contribute to the nohdiffraction-limited nature

of the beam.

The contribution of the aberration function to the On-

axis irradiance at the focal plane can be assessed using the

Strehl criterion (Ref 3:464),

I(x=O) 1 2 (39),-. . I ( x= 00)•

where, is the variance of the phase aberration func-

tion. When phase distortions are small (less than 1/5 A ),

the normalized intensity at the center of the observation

plane at focus is independent of the nature of the aberra-
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tion and is proportional to the variance of the aberration

function.

Phase aberrations are generally due to imperfections in

the optical device such as a laser. In this report, phase

aberration will be represented as the Fourier series expan-

sion of a function which satisfies the condition:

1 - 1x <x < x

f(x,y) = rect(x)rect(y) = 1 0 elsewhere

(3.10)

A graphical representation of this function is shown in fi-

gure 12. Thus, the phase aberration function for non-dif-

fraction-limited beams can be represented as:

"(x,y) 2x)cos(n r ") ] I

A cs~7/lx ly (.1

where, An  is a randomly generated coefficient represen-

ting the amplitude of the phase distortion, and lx and

ly are the corresponding aperture widths in the x and y

directions. The coefficients are randomly generated by a

random number generator.

The Numerical Model

In developing the computer model, the incident field
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[(x,

12. :h e--27,1,

is assumed to be Gaussian in intensity, truncated by an aper-

ture (either rectangular or circular), and focused by a per-

fect thin lens. The system is assumed to be aberrated by the

..

function m~x~y of equation 3.11. For the sake of simpli-

city, however, only the x-component of equation 3.11 is con-

sidered to contribute to the aberration. Thus, UI(x ry)

of equation 3.1 becomes:

2222

__(x _ 2+y 22 -

02 0 (x2+y2 j O(x)
u re (ei he r rw 2  ejknD e 2f ou o e fo ect(x y e

(3.14)

where, w is the spot size at the aperture. For a rectangu-

lar aperture, with transmittance function described by equa-

tion 3.10, the limits of integration can be changed, thereby
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reducing the form of the nondiffraction-limited irradiance

profile to:

21y 1-x ,x 2 +yo2
1 [ o~] jk (x 2 +y2 ) j O(x)

I(x 1 ,yl )( - z 2  e w e e2ff x Oe

- 21y-- ix(Xz.)2+ 2 JJ17 2

e2z(o+oz (xoxl+yYi)

X e( 0 YO e 0 1 y0  dxody

(3.15)

The function of the computer code is to numerically in-

tegrate equation 3.15. For circular apertures, only the in-

tegration limits of equatibn 3.15 are changed. Note that the

quadratic terms are left inside the integral since z is not

necessarily always equal to f . This is especially conven-

ient when the irradiance profile of beams not at lens focus

is desired. Numerical integration is accomplished using a

modified form of the trapezoid rule (Ref 14).

Modeling nondiffraction-limited beams in two dimensions

provides greater flexibility in studying non-symmetrical

laser beam.. In addition, the form of the phase aberration

function is not necessarily separable in x and y . Such

is the case with the aberration function of equation 3.11.

The x component of the aberration cannot be separated and

treated independently from its y component.

Figure 13 shows a simplified flow diagram of the code.

Appendix A includes the program listing and a sample data
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output from this numerical code. The following sections will

briefly describe the three main parts of the code: input,out-

put, and operation.

Inputs. 1. Laser wavelength.

2. Aperture type- circular or rectangular.

3. Aperture dimension-
-if rectangular, the width of the aper-
ture in x and y directions.

-if circular, the radius of the aper-
ture.

4. Extent of the observation plane.

5. z - distance of the observation plane to
the aperture.

6. f - the focal length of the lens.

6, Operation. The code determines the irradiance distri-

bution of an aberrated optical system. Only the distribu-

tion in the x axis at the y=O reference point of the ob-

servation plane is calculated. The integration process

arranges the aperture plane into a 20x20 array. A bigger

array is certainly more desirable, but due to constraints in

computer time and cost, this is not possible. However, for

the purpose of this study, the array size chosen was found

to be sufficiently accurate. Accuracy of the computer model

was determined by comparing results derived from the model

with theoretical results. Two important points were compared.

They are:

1. Axial distance of zero points from the central

axis (x=O), and
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2. Relative values of maximums and their points of

occurrences, e.g. 1st side lobe, 2nd side lobe, etc.

The model was found to be accurate to within 2% of the theo-

retical results.

Fitty data points, in the observation plane, are calcu-

lated. This number of points was found to be adequate in

describing the irradiance distributions of simulated nondif-

fraction-limited laser beams. For each point in the obser-

:" vation plane, integration over the entire extent of the aper-

ture is necessary. As mentioned earlier, integration is done

using a modified form of the trapezoid numerical integration

rule. All points in the plane of observation are normalized

with respect to the on-axis (x=0,y=O) irradiance of the dif-

A fraction-limited case.

Output. In this thesis, data points of irradiance ver-

sus the axis of observation were stored to tape. Plots were

generated by attaching the data tape into available Air Force

Institute of Technology computer/plotter packages. In this

-report, data plots were generated using the HPPLOTTER.
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IV. Characterizing Phase Aberrated Laser Beams

Chapter II of this thesis report reviewed the current

methods used to characterize laser beams and thb procedures

used to measure them. Chapter III discussed the development

of a computer model to numerically simulate nondiffraction-

limited beams at the focal plane of a lens. From this model,

certain characteristics of phase aberrated beams were found

to contribute to the overall quality measure of laser beams.

When describing the quality of beams, it is important that

these characteristics are measured. Most of the existing

characterization criteria do not attempt to describe these

*i characteristics. This chapter proposes measuring these pa-

rameters when characterizing the quality of laser beams. A

rr method to measure these parameters by a least squares curve

fitting method will also be discussed.

Characteristics of Nondiffraction-limited Beams

The Strehl criterion of equation 3.9 determines the on-

axis normalized irradiance of a nondiffraction-limited beam.

An important parameter which the Strehi criterion do not

describe, however, is the lateral extent of the aberrated

beam. The energy removed from the on-axis beam is re-distri-

* buted into the outskirts of the main beam. This scattered

- energy forms a 'halo' around the main beam. Hogge, Butts,

and Burlakoff (Ref 8) showed that the nondiffraction-limited

* beam can be expressed as the sum of two beams. One beam is
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the attenuated diffraction-limited beam, the other is a much

. -wider beam whose amplitude and lateral extent depend on both

the variance and the functional form of the aberration.

By assuming the shape of the 'halo' to be Gaussian, a

mathematical expression is hereby introduced describing the

nature of the nondiffraction-limited beam. The form of this

expression is:

F I (x) . ex /2 2 (4.1)
• +~ ( 1-2Fi-2/20 .

0
"' where, FIo0(x) is the 'first' beam described as the diffrac-

tion-limited beam attenuated by a factor F . The second

term of equation 4.1 represents the 'secondary' beam or 'halo'

which is Gaussian in shape with variance 0.2

Using the computer model descibed in Chapter III, re-

sulting irradiance distributions at the focal plane of the

lens were analyzed. In these simulations, the laser beam

was assumed to have a waist of 0.45 mm, truncated by a rec-

tangular aperture (1 mm x 1 mm), and focused by a lens with

a focal length of 20 cm.

To simulate the effects of random phase aberration, the

first twenty terms of the series expansion of the aberration

function (equation 3.11) were considered. For the sake of

simplicity, only the x component of equation 3.11 is in-

cluded. The y component, in this model, is assumed cons-

4tant. The coefficients in each term of the series are ran-
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dom numbers. In the study of random phase aberration and

its effects on the irradiance distribution of nondiffraction-

limited beams, five different sets of random coefficients

were multiplicatively scaled to reflect new strengths of

phase distortion. The variance for each set is proportio-

nal to the sum of the squares of the coefficients. The form

* - of the variance is derived below:

If the aberration function is expressed as:

: (x) = 279/X Acos2T7- (4.2)

where, A is the amplitude or distortion of the aberration

function, then the variance of this function is:

, lx 1x

J 2 (x) dx (x) dx 2

- 21x - 1xA02= O(x)2 - O(x) = (x - [ J4.3)
fdx fdx

- 1x - 1x

or

A02=(7r/X )2 A2  (4.4)

Let the square of the coefficient be represented as C ,

and let C2 = (2 A/ X )2 , then equation 4.4 reduces to:

A = (4.5)
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For two or more terms of the aberration function, the var-

iance takes the form,

= CI + C2 + .. C (4.6a)

or

N
2 [ C] (4.6b)

-:.i=1

If the variance of the first set of coefficients is re-
20

i.::-pesnedb =2 2
presented by C or sum(C i ) then the subsequent sets

20 I1
are l( Ci)2 or sum( C) , sum(Ci/3)2 , sum(Ci/6) 2,

and sum(Ci/8) 2 sum(C) 2 is the most aberrated case,

2while sum(Ci/8) the least. Appendix C lists the random-

ly generated values of coefficients. Figures 14 to 18 show

individual irradiance distribution plots for the five diffe-

rent sets of coefficients studied, while figure 19 show a

comparative irradiance plot of a diffraction-limited beam and

three cases of aberrated beams. It is evident, from these

plots and equation 4.1, that as the variance of the phase

aberration increases, the on-axis irradiance decreases, while

increasing the amplitude of the 'secondary' beam or 'halo'.

An increase in the variance of the function idicates an in-

crease in the coefficients of the individual terms in the

series expansion representing aberration.

The lateral extent of the 'secondary' beam is a funct-

ion of the individual terms in the series expansion of the

-aberration function. To study this relationship, several
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simulations were done, whereby only specific terms of the

series expansion were considered. By doing this, it is

assumed that the specific term considered is the major con-

tributing term in the expansion. All the other terms are

zero or very small in amplitude and thus, negligible. In

all cases, the variance of the phase aberration function was

kept constant. In one set of simulation, the fundamental

mode, the second, third, and fifth harmonics or terms of the

series were individually considered. A phase distortion

amounting to 0.095 i was assumed for each one. The results

* of these simulations are shown in figures 20 to 23. Notice

that the extent of the aberrated beam increases with increa-

sing harmonics of the aberration function.

By representing the 'secondary' beam or 'halo' with a

Gaussian distribution function, the extent of the nondiffrac-

tion-limited beam can be conveniently determined by measur-

ing the variance, 02 , of the distribution.

Most of the current methods of beam characterization do

not attempt to describe the attenuating factor and the late-

ral extent of the aberrated beam. In most cases, only one

parameter is measured. For example, the 'power in the bucket'

method measures the 'number of times diffraction-limited'

value. There is no basis of quantitative development for

this measure to which it might be shown that the measure

- * alone completely describes the beam quality. The Strehl

*m 46
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. . .

criterion also lends itself to a singular measure for beam

quality. Although, it is important to determine the on-axis

irradiance of an aberrated beam, it is also important to

know how the scattered energy is distributed beyond the cen-

"- tral axis. A better measure of beam quality, therefore, is

one which determines both the attenuating factor imposed on

the ideal beam, and the lateral extent of the aberrated beam.

It is proposed, that in characterizing beam quality of some

Air Force lasers, the attenuating factor F and the extent,

represented by the variance .2 are measured. The follow-

ing section will now discus a method of numerically measur-

ing these important beam quality par;cmcers.

Least Squares Method of Curve Fitting

To determine the parameters F and 02 the aber-

rated irradiance I(x) was numerically fitted to the mathe-

matical expression of equation 4.1. Corresponding to each

of the observed values of x , there are two values of ir-

radiance, namely, the observed value of irradiance I(x) and

the irradiance of equation 4.1

(xF_x 2/2 2

* I'(x) = I(XF e (4.1)

The difference between I(x) and I'(x) is called the

deviation.

4 d = I(x) -Io(x)F - eX 2 /2 2  (47)-- 2 7r r)- 2 (47
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Each deviation measures the amount by which the predicted

value of irradiance falls short of the observed value I(x).

The set of all deviations,

2 2

Ed 1 -1- 1XJ 'V 7o[d= I) n )-I (X )F ] ...... (

": gives a picture Of the closeness of fit of the mathematical

~expression, equation 4.1, to the observed data. The mathema-

i tical expression is a perfect fit only if all deviations are

zero. By squaring each term in the set, positive and nega-

tive values of d are weighted equally. Thus,

N N 2 2

)-I F(1-F)

J(F,0)= 42 E[I(n)Io (Xn) F-q2,r. 2 e (4.8

n n0,

~(4.9)

ivThe sum of the squares of the deviation depends upon the

' .choice of F and 0

e The method of least squares fit takes as the solution,

tclx p s is a perfect fit of best fit that one

erfor which the sum of the squares of the deviation is a mini-

mum. Thus, values for F and q are determined for which

""the surface H=J(F, 0) in F, 0,H- -space has a low point.

~To find this minimum, the following partial differential
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equations are solved simultaneously:

aJF -0 and =0 (4.11)

or,
r" ( 1-F _X~n/2Q 2
I(Xn)_io(Xn)F eIF ]2=0 (4.12a)

and,
_2 2

(1-F) -/2 0"•[I(xn)-Io(x n )F - ,. e ]2=0 (4.12a)

,!.Q The solution was derived rather extensively, and the steps

taken will not be shown here. Two expressions were derived

from the solution of equations 4.12aand 4.12b. The expres-

"" sions are given below:

(( n n e te2n
X)I(x)- 2

"F 0 n 0n 127T 2(7 2
2I(Xn) -X n/202 x 2 / 2

[ N 2(Xn)- 2  ne n + e

n1 122?2

(4.13)

and,

N 2 2 2•~- /20 - eXn
i-'_G(F'O1= E P IO (X n )F- I (x n )) I-F )2  2 e n + (1-F)3 n

~ln=1 2 7ro. 2 71

X [(x 2 2 ) - 1] = 0 (4.14)

To determine F and 0 , a numerical method of approxima-
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ting the root of G(F,0) via the incremental search method

was used. Figure 24 depicts the flow diagram of this numeri-

cal process.

The numerical codes works in this manner. An initial

value for 0 is assigned and equation 4.13 is calculated

for F . F is then substituted into equation 4.14 and G(F,

O initial) is calculated. A next value of 0 is consi-

dered repeating the process outlined above until a value for

G(F, O'next) is determined. The two values for G are mul-

tiplied and this product is analyzed. If the product is

zero, the root has been found. If it is negative, then a

solution very close to the root has been reached. Small in-

crements are added to 0 , repeating the process until a

predetermined level of accuracy is achieved. If the product

is positive, 17 is incremented until a negative product or

a zero product is attained. Appendix B lists the numerical

code of least squares curve fitting used to determine F and

a.

Data Analysis

In the preceding sections of this chapter, it was shown

that the lateral extent of the 'secondary' beam varied as a

function of the harmonics of the aberration function. As

higher terms in the series expansion were considered, the

lateral extent of the nondiffraction-limited beam increased

accordingly. Now a numerical code is available to determine

4 the relationship between F, 0* , and the aberration function.
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Several simulation runs were done to investigate this rela-

tionship. First, the relative strengths of the phase dis-

tortion were varied while considering only the fundamental

mode of the aberration. F and 0 were derived by the

numerical least squares curve fitting method discussed above.

Next, the second, third, and fourth harmonics were indivi-

dually considered. Results of these analyses are shown in

table I. Figures 25 to 29 show the 'quality' of some of the

fits. As predicted, the lateral extent or the variance of

the 'secondary' beam increased as a function of the harmonic

term considered.

From the data, an important observation is made regard-

ing the relationship between F and 02 They are inde-

pendent of each other and must be treated separately. From

table I, the variance is shown to be relatively constant

*over a wide range of phase distortions for the specific term

considered. F approximates the value of the on-axis irrad-

iance as the amount of aberration becomes smaller. The amp-

litude of the secondary beam or 'halo' becomes small, but

the lateral extent remains the same. Thus the measured

variance reflects, in general, the lateral extent owing to

the more dominant term in the series expansion.

* Next, curve fitting of irradiance profiles generated

by simulating random phase aberrations containing the first

twenty terms of the series expansion was done. Various

strengths of phase distortion were considered. Figures 30

to 34 show the quality of these fits, yielding values for

F and .2 which are listed in table II.
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Table I

Measured values of F and O 2 for Individual Terms

Mode Aberration function 02-extent F I(x=0)
277/ Acos (n2 7Tx)

Fundamental 0.15 cos 27tx 1.45 0.98 0.99

0.40 cos 27lx 1.47 0.88 0.93

0.50 cos 2lrx 1.48 0.83 0.89

0.60 cos 27rx 1.49 0.76 0.85

0.75 cos 27Tx 1.51 0.64 0.78

0.95 cos 27'x 1.55 0.46 0.66

2nd Harmonic 0.40 cos 4iTx 6.81 0.90 0.92

0.60 cos 4"1Tx 6.91 0.78 0.83

0.95 cos 47tx 7.23 0.51 0.62

3rd Harmonic 0.40 cos 67rx 18.02 0.91 0.92

0.60 cos 67rx 18.31 0.80 0.83

0.95 cos 67rx 19.19 0.56 0.62

4th Harmonic 0.40 cos 87Tx 35.57 0.91 0.92
6 0.60 cos 87fx 36.04 0.81 0.83

0.95 cos 8'1x 37.44 0.576 0.62
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Table II

Measured F and 2 for twenty random numbers of aberration

Variance of
Aberration 0,-extent F I(x=0)

"sum(C 2 34.28 0.26 0.33

'SUM( C2) 2  13.79 0.70 0.74
2

sum(C i/3) 66.03 0.63 0.68

2
k-sum(C ./4) 66.09 0.69 0.74

2

-sum(C /7)2  65.56 0.86 0.88

Sum(C/8 65.48 0.89 0.91

IT sum(C /2.5) 2 63.38 0.64 --
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V. Conclusions and Recommendations

Two important characteristics of laser beams in the

presence of random phase aberrations were discussed in

Chapter IV. The amount of attenuation and the lateral

extent of the nondiffraction-limited beam describe the

amplitude and form of the aberration and provide a better

measure of laser beam quality.

Phase I of this study identified several currently

used methods to characterize the quality of laser beams.

In general, these methods and the figures of merit asso-

ciated with them are insufficent. As already mentioned,

a single parameter is often used when assigning a quality

measure for a laser system. However, this singular para-

meter is insufficient since it does not describe the

lateral extent of the phase aberrated beams. For example,

in the 'power in the bucket' method, the 'times diffraction-

limited' number is the quality number, and this is measured

at an arbitrary point in the P-R curve. Similarly, only

the normalized on-axis irradiance is determined from the

Strehl criterion.

The far-field irradiance distribution and the total

power curve (P-R curve) contains far greater information

than what a singular measure would indicate. A single

point in these curves simply cannot give a quantitative

description of the overall quality of a laser beam. In

the developing sections of this report, it was found that
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.

two quantities, namely the attenuating factor F and the

• . measure of lateral extent, 0-2 provided a better measure

of quality for aberrated beams. Therefore, as a result

of this thesis analysis, it is recommended that when char-

acterizing the quality of laser beams, these two quantities

are measured.

In describing beam quality using the 'times diffraction-

limited' number, a number equal to 1, indicated a laser beam

which is diffraction limited. Using the Strehl ratio, a ratio

of 0.8 or better reflects a laser beam which is effectively

unaberrated. Using the newly derived FOMs, an F equal to

1, defines an ideal or diffraction-limited beam. Examining

equation 4.1, it is noted that at this limit, the second

E'W term representing the amplitude and spread of the 'halo' dis-

appears. When the laser beam is phase aberrated, F becomes

less than unity, and the 'secondary' beam appears. The spread

of the 'secondary' beam, as discussed in Chapter IV, is a

function of the form of the aberration and not its variance.

Thus, for one form of aberration, the lateral extent of the

beam remains the same for varying amounts of distortion. As

the beam becomes more aberrated, the amplitude of the 'secon-

dary' beam increases since more energy is scattered into this

beam, while the spread remains constant. In attempting to

approximate the form of the diffraction-limited beam, it is

important, therefore, to minimize both the amount of attenu-

ation and the spread or lateral extent of the 'secondary' beam.
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The total power plots of figures 35 to 39 were the

*result of integrating the irradiance of the diffraction-

*limited beam, the aberrated beam and the 'fitted' beam.

(The power plots of the normal and 'fitted' aberrated

beams were included to show, once again, the closeness of

the numerical fit discussed in the last chapter.) The

* total power plots are no more than the P-R curves, dis-

cussed in Chapter II, and derived from the 'power in the

bucket' method. Figures 35 to 36 show the power plot of

*' .an aberrated beam whose spread, 0.2 was measured at

* .approximately 65mm. While figures 37 to 39 are for aber-

rated beams with a spread of about 1.5 mm. Each plot

. represents different amounts of attenuation. An important

' observation is made from these power plots which supports

an earlier hypothesis. Aberrated beams with high F values

and small 'secondary' beam spread closely approximates the

diffraction-limited case moreso than beams with low F

values and wider dispersions. Thus, as a result, the ulti-

mate design gcal for laser systems is an attenuation factor

of unity. Since, for practical systems this is not achieved

readily, then a realistic design objective must be a laser

system whose beam is characterized with an F very close

to 1 and a 'secondary' beam with a small lateral extent.

F and 02 are derived from the overall far-field

irradiance profile. As already mentioned above, the total

power plots of P-R curves are the result of integrating
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this irradiance distribution. Therefore, the attenuating

factor and the extent of the aberrated beam can be derived

from differentiating the total power P-R curve. No special

method or apparatus is required, since these two quantities

can be measured from the P-R curve generated by the 'power

in the bucket' method. The next section describes a pro-

posed procedure to do this measurement.

Proposed Procedures

The process of experimentally determining F and

20 is divided into five different steps. These are set-up,

beam alignment, P-R curve generation, derivation of the

irradiance profile from the P-R curve, and finally, measure-

ment of the attenuating factor and lateral extent.

ri Apparatus Set-up. The experimental set-up of figure

3 will be used. A lens system of focal length, f, will

be inserted between the laser and an adjustable aperture

with a power detector immediately behind it. To achieve

far-field conditions at the input of the power detector, it

is vital that the variable aperture is placed exactly at the

focus of the lens.

Beam Alignment. The position of the center of the

beam, at the plane of the variable aperture, is required in

order to optimize power measurement. Exact beam center must

be known since the central point of the variable aperture is

.77
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aligned with this beam center. A method of determining

* laser beam center was outlined in Chapter II. Briefly,

this required the use of an opaque ribbon of finite width

2a. By scanning this ribbon across the beam, the minimum

output power is realized when the ribbon reaches the center

of the beam. For a more detailed discussion of this tech-

nique see Ref. 23. The center of the adjustable aperture

is then aligned with this beam center.

P-R Curve Generation. In the conventional 'power in

the bucket' method, the variable aperture is opened to its

maximum diameter, to measure the total output power of the

laser. Power measurements are then taken for various

aperture diameter. This value is normalized with respect

CF to the laser's total output power and plotted with the

normalized power plot of the diffraction-limited case.

However, the degree of phase aberration, present in

the laser system, is not known at the outset and, hence,

the total power measured the conventional way may be in-

accurate. The amount of energy falling on the surface of

the detector is limited by the maximum size of the variable

aperture, and also, the entrance window of the detector

itself. If the extent of the aberrated beam is beyond

the physical limit of the variable aperture/detector system,

the energy contained in the outskirts is then lost. Thus,

the measured power does not reflect the true total power

I7



of the laser. A convenient solution to the problem is

a numerical fit of the measured absolute power values

(for different aperture diameter) with some mathematical

expression. From this expression, the total power of the

laser can be mathematically approximated simply by setting

the independent variable of the expression equal to in-

finity. The measured values of absolute power as a func-

tion of aperture diameter can now be normalized with respect

to the calculated total laser power.

Irradiance Distribution. The nondiffraction-limited

P-R curve is the result of integrating the irradiance dis-

tribution of a test laser. Thus, by taking the derivative

of the total power, irradiance can be determined. Since

the form of the irradiance distribution for the diffraction-

limited case is known from theory, only the nondiffraction-

limited power must be differentiated to obtain the aberrated

irradiance distribution.!12
Determine F and 02 With both the diffraction-

limited and aberrated irradiance known, the attenuation

factor F and the nondiffraction-limited beam's lateral

2
extent 0 can now be found by the least squares method

of curve fitting discussed earlier in Chapter IV. The pro-

gram listing of this method is listed in Appendix B.
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Appendix A

Numerical Model of Non-Diffraction Limited Beam

PROGRAM £'IF3:. iNPU T,jU Ti.j' T AP =IFPUT, TAPE6=0U T- Uf TAE9
1-1.1 DJu LE PRECISION DSEED

120 =  DIMENSION PX(I05,105),PXA(105,105)
1.30= DIMENSION PLOG(105,O5),PLOGA(iO5,1-5),AX1(105) ,A YI(105)
140= DIMENSION DFF(10b)
1.50= DIMENSION RNDM(50)
163= COMPLEX AR6,EA,EBEA1,EB1

170= COMPLEX CZ
180= COMPLEX FX,SUI,FXA.SU(A,FXIFXMAXFXAI,FXAMAX
190= COMPLEX ABERR,AREAIAREA,AREAIA,AREAA,VOL,VOLA
200= COMPLEX V,VA,CX,CXA,CPX,CPXA,FXPSPX,PA.PMI.AI .A,VPO.;JP.C
210= COMPLEX EFCS,EAFCS
220= COMPLEX ANUM,ANUM3
230=C
240=C THIS PROGRAM DETERMINES tHE IRRADIANCE DISTRIBUT! OF
250=C IIFFRACTION-LiITED & ABERRATED SYSTEMS. BOTH THE FRESNEL
240=C REGION AND THE FRAUNHOFER DIFFRACTION PATTERN CAN BE BE-
27 0=C TERMINED THROUGH THE SOLUTION OF THE FRESNEL-HUYGEN IN-
280=C TEGRAL. THE SOLUTION IS DONE NUMERICALLY USING THE [RAPE-
290=C ZOID RULE OF INTEGRATION. THE POINTS GENERATED IN THE
300=C PRINTOUTS AND PLOTS REPRESENT THE NORMALIZED INTENSITYr 310=C DISTRIBUTION.
320=C IN THIS THESIS, IT IS ASSUMED THAT THE SYSTEM iS
330=C BY A PERFECT THIN LENS WITH FOCAL LENL1H F.
340=C

350=C 4*

3iv- WRITE(6,500)
330=00 FO A r: 2rX, *NUMERICAL SOLU TION fO FRi -: L AL

,.0= WRITE(6,501'
400=501 FORMAT(* *.15X,*1Hi6 PROGRAM CALCULAiEi r *. : E; ,
410 =  E.6,502

025' FORMlATf(I 5X, * * A F -F.IELD ii*(; i Ir DIfS TRI BU FC 10A44)

-A= F0kRMAT(* 5 ,*DIFFRACT !ON -LIMITED AND E EKRA, SYS T:---"t
4 50: WKI I( 6 ,505)
460=50b FORMAT(* *,15X,*+++++.MASTER'S THEhIS r'ROJECT+t-++*
470= WRITE(6,5105)
480=5105 FORMAT(* *.20X,*++.++SYSTEM IS FOCUSED+++.++
490=C

510:C
520=C INPUT PARAMETERS
530=C
540=C I*****: ITIALIZATION OF INTEGRATiliN ,i; i A L3 ,
550=CCCCCC CCCCCC iNTEGRATION .O"MEiTS CCCCLCCCCCCCCCCCC

i"' :.-C5EE1T O~r iIEGRA UON
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;520:0 iUi :Ul EQUIYALENI UF BCD
580= BCD=20.0
590= NBCD=20
600=CCCCCCCCCCCCC OBS PLANE INCREMENT CCCCCCCCCCCCCCCCCC
610=C XXI=INCREMENT
620=C NN=INTEGER EQUIVALENT OF C
630=C NNN=NN+1
640= XXI=50.0
650= NN=50
660= NNPNN+I
670= WRITE(6,570)
680=570 FORMAT(* *,20X,*INPUT THE WAVELENGTH IN O.XXXXXXXX MA n
690= READ(5,400)BLAMDA
700=400 FORnAT(iFO.8.

710= WRITE(6,1750)
720=1750 FORMAT(* *.,20X,*BEAM WAIST IN f 4)
730= READ(5,40i)WO
740=401 FGRNAT(IFIO.4)

7=7-J FORMAT(* *,20X, IfFNUT Z-3SiTANCE FRO, i U f IN T:.
770: READ(5.40i Z
,.30= RiTE(6,517I)
.90=5171 FORm9AT(* *,20X.*INPUT FO0CAt- iEiGH, iETERS*)
8o0 =  READ(5,401)F1
810= F=F1*i000.0

830= i4R.TE(6,572)
840:572 FORMAT(* *.,20X,*APERTURE TYPE: ,-REC.-
850= EA 5,402)ITYPE
8o=402  FORmAf(12)

d7 gQ = C~860:C

900=C WHEN THE APERTURE IS RECTANGULAR. THE FOLLOWING IS
910=c ENTERED:

920=C XRECT-WIDTH OF APERTURE IN THE X-DIRECTION
"" 930:C YRECT-WIDTH OF APERTURE IN THE Y-DiRECT.[ON

740=C
950=C THE GEOMETRIC CENTER OF THE APERTURE IS ALONG THE Z-
960=C AXIS, WITH X AND Y EQUAL TO ZERO. THUS. T: ExTENT 'r
970=C THE APERTURE 13 -XREGTi2 TO ?Ri,2 FUR A.

980=C~90:0 ***** t $c***,:*.*4.***,:..*j '" -fc*,.*** *: . €:**:#4*$**: *.€*:* 4**
lYOO=C7fw4 *

WHEN THE APERTURE IS CIRCULAR. THE FOLLOWING
1020=C ENTERED:
1030=C R-RADIUS OF THE APERTURE. THE POINT WHERE THIS
1040=C IS CALCULATED IS AT X,Y = 0.
105Q=C

1070=c
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i Q8=c ULI rKnti NE UEUMEU~ I U-' F f[HE IW.R I URE
* 1090=C

1100= IF(ITYFE-1)2700,1100,)'QO
1110=41700 CONTINUE
1120=C IF ITIPE:0. THEN REOTANUGUL~i
1 1130= WR ITE ( o 5 o0
I 140=bS F URIM Ax 7 20 X I HE AP E RT U RE 13 ~EtT N fr J TA. fL

1 oO=58 FOKPIAT( I c, jo X E bTH I N X~ fill 1

R;-.ADl5,40i)XRECT

190=582 0I M A T .3 3X. ItEIN~ 2 TJH I fl M

0 =c LIE ER. i;,z XIOhIN -AND ft uMIN 0F:Eiu:

.. 3f= YQfiIN=-YRECT o.
i2 0= LI ET EiFt INE A A'~ AN 0 Y 0Mx AA

E 2

REAO(5,401i
1 .3 X 0 MI N R

1330= XOMAX=R
1 340= YOfIAX=R
1 350=701 CONTINUE
1 360=C
'13?0=1C DETERMINE THE EXTENT OF THE OBSERVATION PLANE
1380=C AT Z. THE GEOMETRIUAL CENTER OF fHIS PLANE 1S
1390=C LOCATED AT X1,Y1 = 0.
1 400=C
1410= URITE(6 '600)
1410=600 FORMAAT* * O2XOENTER THE Di!hu ~x.~~
1430= WRITE(6,601)
1 440=601 FORMA i *.3OX. .~ K-Eil IHE X MIiNIMUM1 Mi 4)
1450= -, D,4O11 IN

147 oz II i ' FORNIA[ * *.30X,*EN1ER THE X MA~XIM UM VALUL IN il. f.)
1 480=D(5..401 1m x
I1490= 'WRITE(6,602)
1500=60? FORMAT(* *.30X,*ENTER THE Y tiINIMUM IN MM.
1510= READ(5,401)Y~iN

41520= WRITE(6,1112)
1530=1112 FORMlAT(* *,30X,*iENiER [HE Y iiAXIMUO VA; L- IN li4 M

'1540= READ(5,40!)YIMAX
1 550=C
1500=:C PRINTDuu DATA INPUTS AND CALt.W.A ii,_WB)
1 570=C
1580: WRITE(6.603)
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I 1 9=60i tiKMAi * IU.': 0V . iJ LLU. fi , C,.t ,:-.i

1 600 =  , 6:. 04 X ij M iii 0iMLN

3 2 V~~ ~~ W r ± S , ~ ~ . X , YiA F h A Xr.. " i~~~~~~~ 01' m 1 ,6 b) U A, x 't i]:7A

1640 =  " 6 xIEtf.!o .

a -

A Ki Z4:3 .14J)BL AM bA
•1720= AFR=XIJMA:,s2+Y'iAAX*s2x.30= ZFR =At( +AFR/ 2

1/40 =  4RITE(6 610ZF R
1750=610 FORMAT(* *.20X,*FAR-FIELO:Z.:,FIj.I,*M )

1760= WITE(6,611)Z/1000.0

1770=611 FORMAT(* *,20X,*YJUR KANL-*,r 10..1 61ErS 4:)

- * 1780= WRiTE(6,607)
1 790= WRITE(6,612;

1800=a121 FORMAr(s *,20X,:,NEW VL:JE O 0-0.
1810= READ(5,402)INEUZ
1820= iF iNEZ- 1 ; 270.75.2

1830=2750 CONTINUE
1840=C
1850=c ASSUME tHAi ROTi 7 AT AFiERTURE EG,.ALS REAM UAs13
I 860=C

.. 1370= W:=WO

1880=C NUMERICAL i;:TEGRAliON OF THE AUNC[UN F(;. I

1890=C WHERE F(X,.) IS EXPRESSED AS
1900=C
1910=C EXP(-J*PI(XX1+YY)/BLAIDA*Z)

1 920=C
1930=C THE INTEGRATION PROCESS WILL BE AS FOLLOWS:
I 940=C I . SET YI CONSrANT AT SOME INflTiAL VALUE

S1950=C 2.VARY Xl
1960=C 3.SET YO AT SOME INITIAL VALUE
1970=C 4.INTEGRATE OVER XO
1980:C 5.INCREMiENT fO N ;NiEFA 4

"" i' 'fO=C ,5...;d~~c 0 STEP.S: ARE CUiltu:'..E .* "E (

C.uNCE X1 S C2;ILETE, E T tA *l;

202uv:C IT L LZE'IRAIE TEK'- R&2''............2 oiA,,X M
•-.203:= XVi X :PIIN

jV

* .., ,, . .' - (: .,
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P~ L X 0. 0,0.0

2i~o= OTO 667
12Z 0 =6 66 XO(ItN=-SURT(R*42-YU*:2)

20= XGMAX=-XOMIN
2220 XO=XOMiN
22-30= STEPXO=2*XOAAX/BCD
2240= XRECT=2*R
2250=667 CONiTINUE
21260= XO=XO+STEPXO
2270= SUM=CMPLX(0.0,0.0)
928 0 SU~m'CMLX0.0,0.0)

2290= 0D 130 IXO=2.iiBCB
2300=C
2 -'10 =C I NT E 6RA i~ EUV Em" X 0 J~a' THE t' 1;
232v=!, I£dEGRATI Ut RULEL.
~330=

2)350= 'ALL

2,3 60 FX=AR6~ri 30= SWI=SUM+FX
.-380= CALL ABERRACAE.RDSEELI,A(ECTX,Y0.,W,-)

243?0= FXA=FX*ABERR
2 4 0 o SUMA=SUMA+FXA

.410=130 XO=ZXO+STEPXO

.2430=C NOW DETEROINE THE AR~EA UNDER [HE CURiE P4 X Af
'1440=C SOME VALUE OF (1.
2450=C
24.50=C DETERMIu~E F(X) INITIAL AiD F(X) N+l
24'0=C
21480= CALLXY(RXYXM;,O.1Y..Lir
2490= FXI=ARG
2500= C AL L A X(A '5 kJu .(AX I liW f

F~ A
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zi AJEr rr

.L A S TE C * I- ,

DETERMIiNE AREi; OF F(X) ,T NEXT YO

':7: XO=XOIIN
0 YG:'O+STEPYO

• "-" 27.0= C

[HE DOUBLE INTEGRAL AT 2Ci'i JiLi- .F
2810C iTERAiED OVER ED. I, VALUE
2.20=C OF IRRADIANCE AT K Ai fi .wLL -i , -

3:28 0=C

2340: E Ri E IRR, IJ Ait c j C ' 1 ~E
•A LiNj ' v'

2560= CXA =CN JU A

- " ),S ''= HF,. ,;: :,

7 VX 1) M=AL(Ci X)iAL

29 10: F'XA( Iy1 X:R EA LCPxA /ALZ
- ""2'920=C

27.1:o=C NE.:XT VALUE 0- ;(i
2940=C
"'250=Iij XI=XI STEF'Xi

- 2960=C

2970=C iOW DETERMINE THE PEAi.( VALUE OF iRRALIAi'NCE ON.
2980=C AXIS. THIS VALUE WiLL BE USED TO ub 1Ai.iE THE

O= 990: i fR'AU i ,CE I£ISIRIBUTIUN.

. 3020= f 0:= GM IN+ S T E f

3030 VP =CmPLX ).0, .0)

3040= ri=O.o3 050 =  bU 14 0 1 r !,, :11*LL

00
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31 i*Qz A U= A U i dI

31670= CL

318C.= F A"PZARG
31,?f; SPX=SPX,+FXP
3200=150 XG=XU+STEXG

3210= CALL XYZ(ARG1 UOXY,XOiI N.YO,0.0,0.0.A<,F.B-AmtiA.Fi

323o= CALL XYZ.(ARG.,UOXf,XGAX.Y.0.,.,A,FBLAAiDA,F)
3 24 0 PMI=ARG

*3250z A1=PA+2*SPX.PMI
3260= A=STEPXO*AI/2
3270= VPO=STEPYO:OA
3280= VP: VP+VPO
3290:140 YQzYO+STEP'l0
3300= C=CONJG(YP)
SS10: CZ=C*Vp
3320= PEAK=REAL(CZ)/ALZ
3330=C
33404C NORMALIZE IRRABIANCE DISTRiBUTION WITH RESPELT TO
3350=C PEAK 1INTENSITt OF DIFFRACTION-LIMITED CASE. EVAL-
j33o0= UATED AT X1=0 AND Y1=0.
3370=c
3380= J:

33?0= O 170 JX:1,,mNti
3400= PLOI3(JYpJX):PX(JY,JX)/PEAK
3410= PLOGA(JYJX)=PXA(JYgJX)/PEAK
3420=170 CONTINUE
3430=C
3440=C REPLACE Xl AND 11 INTO ARRAYS AXi AND AY1
34504C
3460= AX1(1:=X1NIN
3470= AY1(l)z0.0
3480= DO 181 X=2,NNN
3490= AX1(K)=AX1(K-1)+57EPX1
3500=181 CONTINUE
35104C
55i20=C PRINT EVER~Y NTH DATA POINT 10 AR~RAY
35302C

3550= URIrE(6,531)AY1U1)
3560:531 FORMAT(*0*?20X,*f £:.2

*3570z DO 691 NINNN

3600=.i FQR0AT~i5X.,F .2'3F!4 .6)

3 62 074 3) F l RA 2OX 5
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-:3640= END

3660C ***t*t****** ***:**** * *****-f v*4 tf****fz$ .tr1..

V 6/0C SUBROUTINE. TO EVALUATE F(X) OF INTEiRAL

3a90= SUD"flUTI1NE XY Z AR'G, UJAYGrOX1Y1,AXZLAflDA, F

3?00= L'UttLEX ARG
3710= CWflLEX EA,EB

0,3,"20;= COMPLEX EA1,EB1
3,,30= COMPLEX EFCS,EAFCS

37-50=C EXP(J AKt'2*L(Xs*2+Y**2)
3 760=C
3770= ADDA=XO**2
3780= AODBYO**2
3'90= ADD=ADDA4ADDB
3800= PRODA=AK*ADD
3810= PROD=PRODA/(2*Z)
3820= EA14NMPLX(0.0,PRDD)
3830= EA=CEXPCEAJ)
3840=C
3B502C LENS PHASE *TRANSFORMATION FUNCTION
3860=C
3970= PRFCS=PRODA/ (2*F)
3880= EFCS=CIPLX(0.0,-PRFCS)

39Q EAFCSsCEXP(EFCS)
3900=C

p39102C EXP(-J*2PI/BLAMDA*Z(XOX1+YOYI)
* 3920=C

3930= A001=(XO*XI)+(YO*YI)
3940= PRAD=-2*3.14159*ADOI

A39502Q=lPAD(LMAZ

3960= £31=CI PLX(0.0,PRUDlJ
3970= EB=CEXP(EB1)
393Q= ARUxUOXY*EA*EB*EAFCS
3990Q RETURN
4000= END
401C
402mC
4030=C SUBROUTINE TO GENERATE ABERRATION
404C
4050z SUBROUTINE ABERRAC(ABERR,DSEEDXRECT,XO ,YO,UZ)
4060= DOUBLE PRECISION DSEED
4070= DIMENSION RNDNt(50)
4080= COMPLEX ABERR, ANUO,ANUNJ
4090Q D5EED=123457.D10
4JQQz NR=20
4110x ABSUM=0.

*4120z DO 4313 KhtPJ,20
4130z A~1(~jfKl,2;3i19x)X~~

-5 89



4140 A- (t m.- . r - .- ---

N4150= CALL 6GUT(OSEE,iR,RN;i)
4160= ANN=4ri~~i/.: Aritli
417, 0: AB$Un=ASU + ANUR2
4ib%003313 CONTINUE

4200= ANUR:CEXP AUlJ)

4210= ABERRmANU
4220= RETURNp4230= Eiii'

20LSuB OuriME TO &sliRiifE r i;Ls

42b0= SUBRUUTINE FIEL-'DtUUAY,XO,YO,U 4L, ITYPE)
4290= IFUITYPE.EO.1)00O 800
4300= ;iECT=1.0

7 CALL iItC(CINC,XO,y0,U)
;3210= UGKY=RECT*CINC
43-30= 613TO 83?94340=800 CiiW:1 .0

p4350= CALL FINC(CINC,XO,YO,U)

K4370=83? CONTINUE
4380= RETrURN
4390= END

4400=C.
441 0=C

-~4420=C SUBROUTINE FOR A GAUSSIAN INCIDENT FIELD
Sb 4430=C
A4440= SUBROUTINE FINC(CINCXOYO.W)

4450Q TOP=XO**24Y0**2
4460= TOPI=TOP/(U**2)
4470z CINC=EXP(-TOPI)
4480= RETURN
449@= ENalD
4500=*EOR
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OUR RLAN!.I: . ZNY4ENER.8

XMA IS:MA 5.0

-5.52 .55307 .50125 .5179

-52 I- .0111 522-515
-4.0# Z.565 .1715 -. 58039
-S.56 .003232 .521159 -.501138
-4.32 .003079 .59216 -.521797
-5.58 .53319 .52626 -. 525384
-3.34 .102800 .515712 -.#153715
-3.65 .0539 .814172 -.55987
-3.36 .056958 .528163 -. 5218697
-3.12 .501085 .05724 -.5I53
-2.68 .E15399 .518362 -. 55057
-2.6 .09994 .01123 -. 801369.
-2.45 .054755 .02156 -.512436
-2.68 .510316 .0004368 -.52321
-1.68 .001975 .50S237 -.083959
-1.44 .02715 .05269 -.01326
-216 .5211 .044378 -.023321
-. 96 .58224S .07254 -.830035
-1.62 .#4975 .22ff34 -.82355
-. 44 .6538 .494645 -. 1917
-1.24 .68621 .7466498 .13925
-.95 N1543 .847569 .1534731
.72 .297628 .72448 .17395
-.46 .60638S .494645V .111745
-.24 .29728 .22448 .5135985
.96r . .532543f .847569 .15431
1.24 .85628 .746648 .152521
1.44 .516382 .532649 .117
1.68 .24973 .22534 -. 955
1.92 .542245 .547205 .534739
1216 .5219 .54403798 O2521
2.45 .5532 Ar3159 -.5132167
2.64 .5515415 .055234 -. 02369

3.36 .59225 .51123BA -.508695
3.16 .023996 .044172 -.553373
3.4 .002515 .515762 -.81526
4.58 .55397 4V5F237 -. 0253694
4.12 .516568 .01216 -.052597
4.56 N555964 .&24623 -.051989
4.85 .5802555 .515715 .05375
5.54 .505397 .557850 -.02#385

5.28 .551119 .852626 -515
5.52 .503979 .551285 .551794
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Appendix B

Least Squares Method of Curve Fitting

100= PROGRAM CR'FIT(INPUTtfUTPUT,l PE5=1iNFU~, (APEOJ=,UTPUT.I7AP-*ES.ThIP9)
110z DIMENSIONA( BS)C5)x5 ,Y5J
120=C PR05RAN FOR LEAST SQUARES FIT FOR S16MA AND F
1303C INITIALIZE VARIABLES
140= CALL ?LGTS

130= EPSO0.001
190= PI=3.14159
200= SIGflA=l.

210= STEPSIG:=1.
'110=c READ iN PLOG, PLOI3A. AND A. Wi1ERE:
2'0=C X - VALUES CORRESPONiIN6 TOJ GBSiERAHON PLANJE
240=C PLOG -IDEAL CASE IRRADIANCE A

250=C DO PLOGA -ABERRATED CASE B
260= RD 10 )(I),(),tN,
28021 CONTINUE )A(),(ICl

290=C
300=C CALCULATE FIRST VALUE OF FUNCTION G(SI~tA)

.1** 310=C
320z CALL GOSIG(6,ABX.SIGhANF)
330= GFIRST=G
340=12 SIONA=SLIMA 4 STEPSIG
350=c
3604C CALCULATE G(SIGAA. AT SIGMIA + STEPS166A
3702C
380= CALL GOSIG(6G,B.XjSIGA,9N.F)
3?0= GPRItIE=G
400= IF(OPRIiIE46FIRST)20,30,40

*410=40 GFIRST=GPRINE
420= GOTO 12
430=20 IF(EPS .GE. STEPSIG) GOTO 30
440= SIGIIA=SIGMA - STEPSIG
450= STEPSIG=SrEPSIG/10.
460= GOTO 12
470=30 CONTINUE
480z URITE(6,10l)SIGIIA**2?F
4902101 FORMAT(20X,*VARIANCE IS:.,F12. 5,IOX,*F IS:*,F12.5)

-~ 5002C
510=C PRINT OUT FITTED VALUES TO COMPARE UITH ANALYTICAL RESULTS
520z DO 1? N:1,N
5302 YJ(M)zF*A()+( .F) *EXP(-0.5*((f)i SA) *42) UR2 tiH "S 3ARt12;1
540=17 CONTINUE

550=C LOT OF DATA F01.1TS lh THE h Pj'i

92



CALL. FUNI
'480= CALL P 1.6T 2. 2. ,-

600 CA L L S 0A LE B 7.N ii ii
6iz CALL i LE~ 4,N1ni

61i (N+i .G1. 0.25) 60O 999
GuT-i 9Y8E

6!3=999 BNNN2 ) =. 25
61i4=95ii CON~TINUE

0 1JrNf+ )= H~~~ A'A ,11 752

650= CALL Ri(.O.Oi~AtNE1..9.B2.~3
600= CALL NEUPEN~l)

670= CALL LINE(X.B.NNN.1,5,4)
680= CALL SYOL8.,.2,0,11H+-A8ERArEp,O.,11J

6902 CALL NEUPEN(2)
70o= CALL LINE(X.YJ,NN.1,5 .3)

710= CALL SYMBOL(6. .1.0,0.1,aH*-FIrrED,o.,O.
7210= CALL NEUPEMM4
7,30M CALL SYMBOL(1.5,4.5,0.2,17HLEAST SQUAR~ES FIT,LJ.,
740= CALL PLOT(-0.5,-0.5,-3.
750= CALL PLOT(0.,5.5,2.
760= CALL PLOT(S.,5.5,2)
770a CALL PLO-r~8..O.,2)
780= CALL PLOT(0O.f,.

790= CALL SYN8LL(5.4.,.ii.1iHRCTANGJLAR.0..11)
800= CALL SYMBOL(S.,.,iiiiLnDd32 UMO.,15)
810Z CALL SYMB0L(5.,3.6,0.11q13HDIh X= 1.0 tin,0.,13)
820= CALL PLOT(4.?,4.5,-3)
830: CALL PLOT(0.,-1.0.2)
840= CALL PLOT(2.,-1.,2)
850= CALL PLOT(2.,0.,2)
8 60z CALL PLOT(0S,0.,2)
970= CALL PLUTE(N)
$80 Slop
890= END
900:2C
9102c *

920=C *SUBROUTINE TO DETERUIINE G(SiGI A)
9303C
940=C *******.********.:*t***:

960z D~IMENSIOG A: ,x 3
9702 ja.
980=
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1 Q0= i 6- >i -JiijiA )**2 t) '2 .*vi:b fill ;.itf 3
1 040= 1SUM=GAA + 68
1050= G=GSUi*(X(J)/SGlA)*#2-1.)
1064)= 6=1 + 06(
1070=2 CONTINUE
1080= RETURN
1090= END
11 00=C
1110=C *

1120=C SUBROUTINE TO DETERNINE FiSIGijA)
* 1130=C

1140=C
li~o= SUBROUTINE FOSIG(F.A.B,X.SIGMiA.N)

1160- DIMEN41ON A15),B(55).X(53)
1170= FN=O.
1180= FD=0.
1190= PI=3.14159
1200= FA1=1./SGRT(2*PI*SIGA*2)
1210= 00 1 I=1,N
1220= FAI*()U~)BI)*X(05(U/IIA*2*A
1230= FNUN=FA+(EXP(-tX(I)/SIGMA)s*2) )/(2*Pi*SGiIA:.*2)
1240z FN=FM + FNUm
1250z FDA=A( I)**2-(2*A(1) *E( i-)j.5(Xf /S iPA* WO I
1260= FE=D+EP-XIii' 2 2FIr-31-

i1270= FD=FD + FDEN
1280=1 CONTINUE
1290= "F:FN/FD
~..00= EITURN

.113,0Z: END
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Appendix C

Values of Randomly Generated Coefficients

C(1) = 0.248

C(2) = 0.880

C(3) = 0.914

C(4) = 0.035

C(5) = 0.387

C(6) = 0.976

C(7) = 0.611

C(8) = 0.112

C(9) = 0.105

C(10) = 0.553

C(11) = 0.213

C(12) = 0.843

C(13) = 0.314

c(14) = 0.453

C(15) = 0.603

C(16) = 0.955

C(17) = 0.578

c(18) = 0.159

C(19) = 0.030

C(20) = 0.514
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